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The Expansions of Electromagnetic Fields in Cavities*
KANEYUKI KUROKAWAT

Summary—In the theory of cavity resonators, the assumptions
are frequently made that every irrotational function can be repre-
sented as the gradient of a scalar and that every divergenceless
function can be represented as the rotation of a vector. These are,
however, not necessarily correct. This paper corrects these mislead-
ing assumptions and describes ‘‘the theory of cavity resonators”
which supplement the classical theory of Slater.

I. INTRODUCTION

XPANDING the electromagnetic fields in terms

E of complete orthonormal functions, we can re-
duce the problem of solving Maxwell’s equations

in a cavity to that of determining all the expansion
coefficients. In this way, Slater! succeeded in giving the
input impedance of a cavity. However, he did not use
the correct set of functions and missed a capacitance
term in the input impedance expression. Furthermore
he stated that for the expansion of the magnetic field H
in a cavity we did not need the irrotational functions.
The reason for this statement seems to be that H is
itself solenoidal, namely V- H=0. In this regard Teich-
mann and Wigner?® pointed out that the component ex-
pressed as the gradient of a scalar was necessary to
expand H, in addition to the functions corresponding to
the natural resonance modes. The contribution of this
component to the input admittance is a term propor-
tional to w1, that is, an inductance term, where  is the
angular frequency. These functions, however, still re-
main incomplete in the most general case, for the
assumption was made that every irrotational function
can be represented as the gradient of a scalar. The func-
tion which is denoted by the symbol Gy in this paper is
the missing one. In a fairly recent paper, Schelkunoff?
made some comments on Teichmann and Wigner’s
work. His illustration shows that the set of natural
modes is not incomplete if use is made of a short circuit
which conforms to the impressed field. However, the
complete sets of orthonormal functions defined in Sec-
tion II of this paper are more suitable for a general dis-
cussion. These functions already have been well studied
by Miiller.* In his treatment, however, the incorrect

* Manuscript received by the PGMTT, August 16, 1957.
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assumption mentioned above is again taken for granted,
though his final result is undoubtedly correct.

This paper describes “the theory of cavity resonators”
which serves as a supplement to the classical theory of
Slater. The emphasis is placed on correcting widely held
assumptions that, when a function is divergenceless, we
need no irrotational functions to expand the function
and that, when the rotation of a function vanishes, the
function can be expressed as the gradient of a scalar.

II. CoMPLETE SETS OF ORTHONORMAL FUNCTIONS

For the expansion of functions defined in a closed
region V, enclosed by a surface (or surfaces) .S, we first
have to set up appropriate complete sets of orthonormal
functions in V. It is well known that the solutions of
the wave equation with the boundary condition

VA, + kY. =0 (inT)
Ye=0 (onS) (1)
are capable of forming a complete set of orthonormal
functions ¢, (a=1, 2, 3, - - + ) which is used in expand-

ing an arbitrary pilecewise continuous scalar function in
V. Similarly the solutions of

i

Vg -+ k2o = 0 (11’1 V)
a
B0 (ons), @
on

where the derivative is taken in a direction normal to
the surface S, are capable of forming another complete
set o A=0, 1, 2, - - - ) for the expansion of a scalar
function.

For the expansion of an arbitrary piecewise continu-
ous vector function defined in V, in like manner, we
have two complete sets of orthonormal functions
w, (p=0,1,2,---)and®, (¢=0,1, 2, - - - ), each of
which satisfies

VW, + W, =0 (inV)

n Xw, =0, vw, =0 (onlS) (3)
and
VD, + k20, = 0 (in V)
nXVX®, =0, n® =0 (onS). (4)

It is worth noting that two boundary conditions are
necessary to define these vector functions.

Some of W, and ®, have the common eigenvalues
kS (a=1, 2, 3, - - -} and are related to each other by

R, = VX ®, kD, =V X,
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Fig. 2—G, functions.

Let us denote these W', and ®, as E, and H, respectively
hereafter. The above relations become

kaEa =V X Ha; kaHa =V X Ea- (5)

All the other W, and @, will be denoted as F, (a=0, 1,

2,---)and Gx (A\=0,1,2, - - - ). Thenitcan be shown
that the rotations of F, and G, vanish.

VX F,=0, VXGy =0 (6)

F. and Gy with nonzero eigenvalues satisfy the relations
kaFou = Vo,  bGr= Vér (7

where ¥, and ¢, are the functions defined by (1) and (2).
If the closed region 7 has two or more than two separate
boundaries, F, with k,=0 can exist and will be denoted
by the symbol Fy. An example of such a region V is the
space between two concentric spheres. Fy satisfies

VXF():O, VF():O (1n V)
nXFy=0 (on §).

Therefore, by Helmholtz's theorem, Fy can be set equal
to the gradient of a scalar function y.

Fo= V¢

where  satisfies Laplace’s equation V4 =0in V' and the
boundary condition n XV =0 on S. ¢ can be considered
as an electrostatic potential and Fy as the electrostatic
field. In a multiply connected region (the region in which
there are contours which cannot be shrunk away to
nothing) Gy with £, =0 can exist and will be denoted by
the symbol G,. An example of such a region is the space
between two coaxial cylinders closed at both ends. In
this case, G¢ corresponds to the magnetic field produced
by the dec current flowing through the circuit which con-
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sists of the center conductor, the short ends, and the
outer conductor. Gy satisfies

nGy=20 (on S).

Therefore, by Helmholtz’s theorem, G can be set equal
to the rotation of a vector function but not to the
gradient of a scalar function. If we want to set Go equal
to the gradient of a scalar function, we have either to
introduce “a cut” in the region or to use a multivalued
function.

In some cases, there are many independent Fo's and
Go's: however they can all be grouped in the sets of
F.’s and Gv's, respectively, for all of them satisfy (6).

1I1. Ture EXPANSIONS OF ELECTROMAGNETIC FIELDS

We shall use the set of functions E, and F, in expand-
ing the electric field, for E, and F, have boundary con-
ditions similar to those of the actual field E in a cavity.
For the same reason, we shall expand H in a series in
terms of the H,’s and Gy's; the current J in the E.’s
and F.’s; and the charge density p in the ¢.’'s. Thus we
have

E=>, Ef E-E.dv + ZFaf E-F.dv,

H= ZHufH-H,,dv + ZfoH'Gxdw,
a A

J=2 Ef J-E.dv + ZFaf J - Fado,

p=2 k//af pYade. (8)

Since VXE behaves like H, the H,’s and G\’s will be
used to expand VXE.

VxE=ZHafV><E-Hadv

+ 2 fo V X E- Gyds. 9)
A

From the vector relation

l

V(EXVXE)=VXEVYXE,—EYVXVYXE..

= k,H, VX E — k}E, E

and Gauss’ theorem we have
fn X E-H,dS = fV X E-H,dv — kaf E-EJdv. (10)

Similarly from

V-(EX G

G VX E— E-VXGy
Gy VXE
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we have
fn X E-GhdS = f V X E- Gyds. (11)
Inserting (10) and (11) into (9), we obtain
VX E= ZHa{kafE'Eadwfn X E‘Hads},
+ AZ fo n X E-GdS. (12)

In a corresponding way, expanding VX H in a series in
terms of the E,’s and F,’s and using the boundary con-
ditions n X E,=0 and nXF,=0 on .5, we have

VXH=)Y, Eakaf H H.dv. (13)
For the expansion of V-B we shall use the ¢\'s.
V-B =2, ‘i’*f V- Bérdv. (14)
A
From the relation
V-gB = 4V-B + BV
= ¢V-B + kB G\
and Gauss’ theorem we have
f¢>\B~ndS = f V- Bgndv + kxf B-Gydv. (15)
Substituting in (14), we obtain
V-B = Zq&x{—kxfB‘Ghdv—i—fB-nqb)\dS}. (16)
A

Similarly for V- D, expanding in series in the ¢,’s and
using the boundary condition ¥, =0 on S, we have

V-D = %:%{—kaf D-Fadv}. (17)

We have now set up the series for the various quanti-
ties appearing in Maxwell’s equations. Assuming that
€ and u are constant throughout in the region V, we next
substitute these series in Maxwell's equations. From

oB
VXE+—=0
of

we have
ZHa<kaf E-Eadv—l—fn X E'Had5>
+ > fonX E-GydS
A

d
+ME{ZHHIH-Hadv+ EfoH G)\dv}= 0.
a A

(18)
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Multiplying (18) by H, and integrating over V, on ac-
count of the orthonormal conditions, we obtain

d
kafE-Eadv—l—uEfH~Hadv = —fn X E-H,dS. (19)
Multiplying (18) by G, and integrating over V, we have
d
“EfH'G)‘dv = —fn X E-GydS. (20

Similarly from
aD
at

we have

d
kafH-Hadv—eEfE.Eadv :fj-Eadv (21)

a
- E”f E.-F,dv =f]<Fadv. (22)
dt
The equation V-B=0 gives
ke f H - Gydv = f H- ngp\dS. (23)
Finally V- D=p gives
—kaef E - F.dv = fpx,&adv. (29)

From (19)—(24), the expansion coefficients [E:E.dv,
JE Fudv, [H -H,dv, [H-Gydv will be obtained. Substi-
tuting these coefficients in the first two equations in (8),
the desired electric and magnetic fields will be given in
the series expansion.

As shown by Slater, (22) and (24) lead to the same
result if we have the equation of continuity

VJ—I—d 0
at

The only exception is the equations with the subscript
« =0, where F has no corresponding .

To get a relation between (20) and (23) corresponding
to the continuity equation, we take the time derivative
of (23) and substitute in (20).

d

__ f n X E-V$:dS. (25

Here we introduce a differential operator Vg on the sur-
face S which is equivalent to the operator (V—n(d/0x)).
Integrating

Vs (gt X E) = Vg-n X E+ n X E-Vgo

over S and using the relation V¢, = Vs, [for (d¢y/dn) =0
on ], we have



The line integral is over the perimeter of S and is equal
to zero, for the surface S is a closed surface and its
perimeter vanishes. Substituting in (25), we find

d
h f H ng\dS = f (Vs'n X E)pdS. (26

This is true because of

d

Eq. (27) is the continuity for the fictitious surface mag-
netic charge —B-n and the fictitious surface magnetic
current n X E. It expresses the conservation of the ficti-
tious magnetic charge. Egs. (20) and (23) lead to the
same result using (27), as in the case of (22) and (24).
The only exception is the equation with the subscript
A=0,

IV. Tae INPUT ADMITTANCE OF A CAvITY

We next take up a cavity with an output which
couples the cavity to an outside system, and which is
assumed to take the form of a waveguide (or a coaxial
line). Let .Sq be the cross section of the waveguide, which
forms the boundary surface between the cavity and the
output (see Fig. 3). The cavity now consists of the natu-
ral cavity plus the part of the waveguide out to the sur-
face Sp. The cavity wall S and the surface Sy form a
closed surface inside which we are solving Maxwell’s
equations. We assume that the tangential component
of electric field, Ey, is given on So by excitation from the
outside system, and we expand it in terms of the com-
plete orthonormal modes of the waveguide.

where the E.,’s are the orthonormal eigenfunctions for
the transverse electric field in the waveguide and the
V.'s are the expansion coefficients. V,, can be considered
as a voltage associated with #th mode in the waveguide.
Next we shall expand the functions H, and Gy on S,

in series in the E;,'s.
Ha = Z k X EmIam

n

G)\ = E k X EtnI)\m

(29)

(30)

where the 1,.,’s and I),’s are the expansion coefficients,
k is the longitudinal unit vector of the waveguide and is
equal to —n. From (28) and (29), we have.

—f nXE-HadS=kaE‘Hads
N

0 8o
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Fig. 3—Reference plane S,.

= f D kX EwnVa 2k X EplundS
S n m

=2 Valan. (1)
Similarly from (28) and (30), we have
—f n X EG)\dS == Z Vn[}\n- (32)
Sg n

For simplicity, we shall further assume that the angular
frequency w of the exciting field is in the vicinity of the
resonant frequency ws,=~k./+/eu of the E, H, mode,
which is well separated from other resonant frequencies.
Then H, component will be dominant in the magnetic
field and the tangential component of E on S will be
given by the approximation®

nX E=ZH= (1 +j>1/ L[ s 6
agg

where Zg and og are the characteristic impedance and
the conductivity of the wall conductor, respectively.
From (33), we have

Wald
—-fn X E-H,dS = (1 + ) fH-Hadv, (34)
8 Sa

Q

where

(35)

1 1 /2
Y ——— f H.,dS.
Osa 2 woepas Y g

5 If we take the surface roughness and irregularities of the wall
into account, (34) and (35) are rewritten in the forms

Walkk
f a X E-HdS> (14 js) &% f H-Hydo
8 QSa

R
L l1/~?—frmds
Osa’ 2V wapse Jg

where F, and F.S. are the factors which measure the apparent in-
creases in the surface resistance and surface reactance.

Measurements show that the relations Fa. >1, .S¢>1 usually hold.
we' in (39) is replaced by

, (1 Sa
Wa = Wg hadisusanatl Y
ZQSa
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Assuming that J=c¢E, we eliminate [E-E,dv from (19) Substitﬁting (38) and (42) into (8), we have

and (21).

a? d
€u HfH-Hadv + ou — rH~Hadv+ka2fH-Had’U
dag dt v

d
+(e—+ <7>an E-H.,dS
dt s

d
= —<e—+o>f n X E-H,S.
dt S

0

(36)

(d/dt) = jw, for we assumed the time factor et If jwe>a,
as is usually the case, from (31), (34), and (36), we have

o)

= jwe 2 Vilsw (37)

fH-Hadv {kﬁ — wleu + jwou 4+ (1 4 )jwew,u

from which we obtain

> Vilan/ @it

fH‘Hadv = ; (38)
.<w &) n 1
J we %) Q.
where
e maio )
a” T W €M, Wq = Wqo 2Qsa ’
1 1 1 1
—— = (39)
Qa, Qu QSa Qa We€
Next from (20) we have
d
,lt‘“fH'G)\d'D -i—fn X EG)\dS
dt S
= — n X E-GydS. (40)

So

We neglect the second term on the left-hand side of (40)
in comparison with the first term, for n X E is sufficiently
small on S. [In (36) the large terms on the left-hand side
cancel each other and the surface integral [yn X E- H,dS
cannot be neglected in the vicinity of the resonant fre-
quency. | Inserting (30) into (40), we have

oo f H-Gydv = Y, Vi, (41)
from which we obtain
Z VnI)\n
f H-Gydv = —— (42)
Jeou

April
Z anan/wa,u
H= Y H, .
a < w wu,> + 1
J wa I Q.
E an)\n

+ 2. Gy - ; . (43)

A Jou

This is the desired magnetic field in the form of series
expansion,.

For the electric field, from (21) and (22) we have,
taking into account that there is no steady-state solution
for [E F.dv,

_ > Vilan/wu
U n
Ex—j 4/ —2_E,
€ o . < w wa’> n 1
4 w, w Q.
Thus we have solved Maxwell’s equations in the cavity.
The tangential magnetic field on S is given by

- (4

Vn-[an Wq,
Hi=>>>kXEn{Iln { a
aA n m < w _ Wq >+ 1
J w,’ w Q.
nI)\n
+ Do —220 (45)
Joou

We are considering the cavity which has only one out-
put with only one transmission mode. The component
Hj, of this mode is

Viai? was Vila?
Hi = 3 kX Eﬂ{ e 2L 6)
“ [ w cia_> + 1 Jwp
I\ T ) T o
On the other hand, HJ; is expressible in the form
Hi, = k X Enly 47

where I, is the current associated with the transmission
mode. From (46) and (47), we have

Vil, 2/0-‘(//—’« Viln?
L=3 = + X (48)
a <_«1 @ ) n 1 N Jop
I W, w Q.
The input admittance is, therefore,
I [aIQ/wa,Uf ])\12
=—=2 — - (49)
Vi > jwu

o . ( w w.,’) n 1
J w  w Q.

Similarly for cavities with two output leads, we have

I1=
Iy =

YV, -+ V1V,

VsV 4 VooV, (50)
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1
= hy?=—
1 " Z 1 ]wLO
1
Ya 1
j(wLa —— )+ R
wl g
where 1 T
Li= 2%, Co=—— R.o=22t
‘k‘all a? waIZLa Qa’
Fig. 4—Equivalent circuit of one- -entry cavity with
well-separated w,'s.
where
Tailaj/ watt VA Y]
v, = Z , =+ R
a S w  w 1 > jou
=2 ) o
W I3) Q.
(ij =1,2). (51)

I, I, are the currents and Vi, V, are the voltages
associated with the transmission modes in the output
leads No. 1 and No. 2, respectively. The equivalent cir-
cuit of (49) is shown in Fig. 4 and that of (51) in Fig. 5.
The generalization of the above discussion to cavities
with many output leads is easy.

V. G\ FunNcrions

Although the relation V- H=0 holds in the region V,
we need the Gy functions to expand H, because the con-
dition V- H=0 does not necessarily mean the vanishing
of the 1rrotat10nal part of H, as shown by Helmholtz’s
theorem.

We have seen that both the H, and G, functions are
necessary to set up a complete set of orthonormal func-
tions and that an inductance term » a In%/jwu from
the G\’s appears in the input admittance besides the
familiar resonance terms from the H,’s. The Gy’s
(A£0) are related to the conservation law of magnetic
charge as explained before. If the magnetic field enters
the cavity through a part of S, and returns into the
waveguide through the other part of Sy, and if an ob-
server does not see the outside of the cavity, he thinks
that the magnetic charge +| n- Bl is at the entrance
of the field lines through S;, and —|n- By is at their
exit from Sy, and that the magnetic current nXE
flows between them. Such a magnetic field cannot be
expressed by the H.,'s alone but requires the G\’s as
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1 :MNay Moyt
o Q
38 “““gg »h
o, >

1: My

A 4

1 1
yo=—2 (I + Iub), y2=—2 (D + Iulx)
Jow Jow

Y3 = — *“Z Iy,
In Taz
1itg = 1: n‘/ Lintge=1:—n =z
Ial
Ya
i (wLu
where
1 'L
Lo = 2___&/4 =— Ra:wa ,u.
wa'Ia1los Wq 2Lu Qa

Fig. 5—Equivalent circuit of two-entry cavity with
well-separated wg’s.

well. If we neglect the G,’s, we have to assume that
there is no magnetic field through So.

For illustration, let us consider a cavity with the
smallest w, satisfying w,>>w. The input admittance can
now be written in the form

_ Z alQ/waM I_)\lj
o <w wa/> n 1 N2
J ) Q.
= jwCo + P (52)
0
where
T2 1 I?
Co = Z ; ’ —_ = 'l{— . (53)
« Wl Ly N

If the G\'s were neglected, the inductive term 1/jwL,
would not appear and we might come to the conclusion
that the input admittance must be always capacitive
when w,>w (¢=1, 2, 3, -). The input admittance
can be both inductive and capacitive depending on the
magnitudes of Co and Lo. If wCo=1/wL,, the cavity
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shows a resonance which is different from the resonance
of E, and H,. A length of waveguide short-circuited at
one end and shunted by a window at the other end can
be considered as a cavity. .Sy may be placed just in front
of the window. If the length of the cavity is A,/4, cer-
tainly we have w,>>w. The input admittance of the
cavity is, in this case, the shunt admittance of the
window and it can be inductive, capacitive, or resonant,
depending on the type of the window. This shows that
we need the term 1/jwl, in (52) and hence the G, func-
tions to expand H.

In a certain type of cavities, we need the G, function
as well. Though the fictitious magnetic current may
close upon itself and there may be no fictitious magnetic
charge on Sy, this function can contribute an inductance
term to the input admittance. The cavity with a cou-
pling loop and a coaxial line output lead is an example
(Fig. 6). So may be placed in the coaxial line some dis-
tance away from the coupling loop. In this case, we have
the G, function corresponding to the magnetic field pro-
duced by the dc circuit which consists of Sq, the outer
and inner conductors of the coaxial line and the loop.
If the TEM wave is the only transmission mode in the
output lead, the normal component of H on .S, is van-
ishingly small. Still, we have an inductance term in the
input admittance, for nXE on S, can induce the Gy
component of H in the cavity. The necessity for the
inductance term is easily seen, if we consider the admit-
tance at a very low frequency.

Every H, has a corresponding E,, but G, has not.
Hence, Gy is not a resonance mode. Go has no relation to
the fictitious magnetic charge on .Sy and in this respect
Gy is distinct from all the other Gy’s.

Fig. 6—Cavity with loop.

VI. EXAMPLES

To justify our conclusion about the Gy functions, we
shall calculate the input admittance of simple cavities.
First, the input admittance of a short-circuited rec-
tangular waveguide (,X1,) will be taken up. The refer-
ence plane S; is [, away from the shorted end. This
example was discussed in detail in Schelkunoff’s paper,?
still it might be instructive to follow our steps in the
same example. :

Considering the waveguide from the shorted end up
to So as a cavity, we have two types of H, functions.
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LTy | T Ty TG
H, = — 1A< ,,) sin COS — 2 €O$ —
yrvm x Y z
- fTm, TMLE | TyY T3
—I—JA< x> 0§ —— §in —= cos —— (54)
LIV, lz lu lz

A AV A TY T
H, = —i4 sin cos cos
VAN Ly Ly I,
WL ALY TME | TV TS
—jA — | cos sin cos
Lkm/ bk, 1, ly l;

et () + ()
Ea2 L\ I, 1,

T R

- CoS cos ——— sin 55
- L . (35)
where
™\ 2 T\ 2 Tm.\? wg\ 2
ka i + I + =\ (56)
L L I, ¢
€ma€my Emz km -
4= —_— (57
Lobyl . T\ 2

v () - ()

The Gy functions are

emzemy ms T\ | THILE Ty TS
1 sin cos cos
)\

LI, , , I,

x

[Ty TME | THY T2
+ j| ——) cos sin cos
Y l:c lz lz

T, T THY | TS
+ k( ) cos cos sin } s (58)
z £ lu lz
where
i\ 2 iy \ 2 L\
b = + () + (T (59)
Ly Iy 2y .

The €,.'s are the Neumann factors. The cavity is excited
by the TE:i, mode in the waveguide. The tangential
component E; of this mode is

2 mx
—— 8ln —

60
L, (60)

En:j

where +/2/1,l, is the normalizing factor. In this case,
we need H, with m,=1,m,=0, m,=1,2,3, - - - in (55)
and Gy with m,=1, m,=0,m.=0,1,2, - - - only. These
are the functions used by Schelkunoff in his second ap-
proach. From (29) and (30), we obtain
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2 wm,

Iy = 7 — o8 M, (61)
1 6_7’;1: T

I)\l = (62)

- — —— COS M.
WV L

Hence

/o 2 <7rmz>2
L
21 em, /m\2
] 2 —_— e f
Z M Mmg==() k)\z ]:, <ch>

1
Ly

il

il

PG

1+
R
L L, L

Inserting these values in (49) and neglecting the effect
of losses, we have

e\ 2
2 <__> / b
1 I,

J

=

~

n ! -
s

. @
T i b 2”;1— T\ 2 : win\ 2 } i 63
TG "

On the other hand, from transmission line theory, we
have

2
YV = i X—w——gé— cot B, (64)
u jo
where
B = v v = up
m™\? m\?
o (LY 2 (L .
v <z> ‘ <z> /e”
Using the relation
)
1 i 2
cot6=—] 14+ 20—
0 n=1 nm\"
)
{ 6
(64) is rewritten in the form
2
2 {we - <JL> s
1 > L)
Vo= 142 - - (65)

Jwul,

n=1 7\?° nmr\ >
RG]
L I L.

Kurokawa: The Expansions of Eleciromagnetic Fields in Cavities

185

Egs. (63) and (65) can be shown to be identical by a
little algebra, leading to the conclusion that (63) is
equal to (64). Eqs. (63) and (64) represent the same
admittance and hence this conclusion is quite reason-
able. However, if we neglect the Gy functions from the
beginning, the w ! term will not appear in (63) and the
two admittances ditfer from each other.

Next, we shall take up a short-circuited coaxial line,
showing the contribution of the G, function. The dis-
tance between the reference plane .Sy and the short end
is L. The tangential component E4 of the exciting field
is

1 1

(66)

where @ is the radius of inner conductor and b is the in-
ner radius of outer conductor. The induced H,'s by this
field are

1 21 nwz
H, = A/ ——cos— (n=1,2,3, - - )(67)
\/27r log b/a Ly L
and the Gy is
Go— i 1 1/T 1 (68)
=iy — e
b V27 log b/a L

From (29) and (30), we obtain

I = — COS N
1

Iy = —
L

Using the relation
nw 1
Wy = o

L ~/eu

and (49), we have a well known expression of the input

admittance.
/ 1
=/ ww _
L

(69)

If we neglect the G, function, we have again a faulty
result in this case.
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These examples show that we need the Gi\’s as well as
the H,'s to expand the magnetic field, though V-H=0
throughout in the cavity.

VII. APPENDIX
Helmholtz's Theorem

Let V be a region inside a closed surface (or surfaces)
S. Then any vector function F defined in V can be ex-
pressed as the sum of the gradient of a scalar and the
rotation of a vector.

PO iy — [ T
F(r) = v{fs 47TR-ndS — fv x av
(r)

{ F(r
+ VX fS%R

VX F@E) O\
-+ fV —Tﬂ_k—* av } (70)

X ndS’

where
R = ’ r—r ’ ,

V' is a differential operator on r’, and n is the outer
normal on S. Eq. (70) shows that if we have two condi-
tions V- F=0in Vand n-F=0 on S, then F can be set
equal to the rotation of a vector. If we have two con-
ditions VXF=01in Vand nXF=0on S, then F can be
set equal to the gradient of a scalar. VXF=01in V does
not necessarily mean that F=V¢ where ¢ is a scalar
function of position. In a corresponding way V-F=0in
V does not necessarily mean F=VXA where A is a
vector function of position. The examples are the Gy and
F, functions defined in Section IT.

Completeness of W and ®

Consider the relevance

k2f‘lf'2dv =J {(V XW)2 + (VW)2}do
— an X -V XWdS (71)

and take the variation. A little manipulation shows that

ok f‘lf'zd@' = — 2[5@'- (VI 4 ) do

+ zf fw X n-V X+ V-Wnsw}dS. (72)

Therefore

f{(VX‘F)Z—I—(V‘F)?}dw——ZIn+‘If'~V><1[f'dS

f‘lﬂdv

¢ P. M. Morse and H. Feshback, “Methods of Theoretical Phys-
ics,” McGraw-Hill Book Co., Inc., New York, N. Y., p. 54; 1953.

E2= (73)
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is the appropriate variational expression for the eigen-
value of ¥". We can choose W', one by one, each of which
makes

ﬂ=f{WXWm+%VWNMv

+ zfqﬂp X n-V XW,dS (74)

a minimum under the normalizing condition and the
orthogonal conditions.

f\lf'pzdv =1, f\lf‘p'\lf'qdv =0 g<p. (75

An infinite set of functions thus selected forms a com-
plete set of orthonormal functions as the conventional
proof shows.” Every W', satisfies (3). Hence, we come to
the conclusion that the solutions of (3) are capable of
forming a complete set of orthonormal functions.

The variational expression for the eigenvalue of @ is

f{(VXQ)Q—i—(V«I))?}dv—Zf (n-®)(V-D)dS

R
f ®2y

In a similar way as for ¥, we easily verify that the solu-
tions of (4) are capable of forming another complete set
of orthonormal functions.

With the aid of Helmholtz’s theorem, it can be shown
that the w,’s are divided into two groups, the E,’s and
the F,'s and the ®,'s into the H,'s and the Gy's.

Eq. (72) and ko*=0 shows that F, satisfies VX Fy=0
and V-Fy=0 in V since nXW¥'=0 on S. Similarly (75)
and k¢?=0 shows that G, satisfies VX G¢=0 and
V- Go =0 in V

- (76)

Mixed Boundary Conditions

The sets of functions W and @ defined in Section II are
not the only sets for the expansions of the electric and
magnetic fields in a cavity. We can impose the mixed
boundary conditions, short and open, upon the func-
tions. Let S4.5" be a closed surface (or surfaces) in
which we are solving Maxwell’s equations. The solu-
tions of

VA - B = 0

I

n Xw
VW =

0 n XV XYy = 0}

n.S on.S’ 77
o ens) TV onsy am
are capable of forming a complete set of orthonormal
functions. Similarly, the solutions of

7 P. M. Morse and H. Feshback, loc. cif., pp. 738-739. Also see
R. Courant and D. Hilbert, “Methods of Mathematical Physics,”
Interscience Publishers, New York, N. Y., vol. 1, pp. 424-429; 1953.
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Vi 4 k2P = 0
nXVXDP=0 nX® =20
}(onS)
n-®=20 V-® =0

form another complete set of orthonormal functions.

The W¥’s can be divided into two groups, the E,’s and
the F.'s, and the®’s into the H,’s and the Gy’s. E, and
H, satisfy the relations

kE. = V X H,,

I

} (on§)  (78)

kH, =V X E,
and the boundary conditions
nX E, =0

n-H, = 0} (on )

n-E, =0
}(onS’).
nX H, =0

Those are the functions used by Slater. For F, (a0),
we have

kaFa = V‘//a
where ¢, is the solution of

Vo 4 ka’a = 0

o
j— = 0 (onY).
on

Ye = 0 (on )
Slater, however, took the boundary condition ¢,=0 on
S and .S, As a result of this fault, he missed in the input
impedance a capacitance term which corresponds to the
inductance term in (49). In a certain type of cavities,
there exists the function Fy. The best example may be a
cavity with a coupling probe and a coaxial line output
asshown in Fig. 7. For G\ (As20), we have
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Fig. 7—Cavity with probe.

Gy = Vi
where ¢, is the solution of
Vign + ko =

o
oo {on S).
an

q,'))\ =0 (01’1 S/)
Besides the multiply connected region, we have Gy in
the region where S separates S into two or more than
two independent parts. If we take a cross section of the
output guide as S’ and the cavity wall as .S and impose
a tangential magnetic field on S as Slater did, we can
easily show that the Gy components of H are all very
small and can be neglected. But it does not justify the
statement that we need no G, functions to start with.
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