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The Expansions of Electromagnetic Fields in Cavities*
KANEYUKI KUROKAWA~

Summary—In the theory of cavity resonators, the assumptions assumption mentioned above is again taken for granted,
are frequently made that every irrotational function can be repre- though his final result is undoubtedly correct.
sented as the gradient of a scalar and that every dlvergenceless

function can be represented as the rotation of a vector. These are,
This paper describes “the theory of cavity resonators”

however, not necessarily correct. This paper corrects these mislead- which serves as a supplement to the classical theory of

ing assumptions and describes ~Ithe theory of cavity resonators” Slater. The emphasis is placed on correcting widely held

which supplement the classical theory of Slater. assumptions that, when a function is divergenceless, we

need no irrotational functions to expand the function
1. INTRODUCTION and that, when the rotation of a function vanishes, the

EXPANDING the electromagnetic fields in terms

of complete orthonormal functions, we can re-

duce the problem of solving Maxwell’s equations

in a cavity to that of determining all the expansion

coefficients. In this way, Slaterl succeeded in giving the

input impedance of a cavity. However, he did not use

the correct set of functions and missed a capacitance

term in the input impedance expression. Furthermore

he stated that for the expansion of the magnetic field H

in a cavity we did not need the irrotational functions.

The reason for this statement seems to be that H is

function can be expressed as the gradient of a scalar.

II. COMPLETE SETS OF ORTHONORMAL FUNCTIONS

For the expansion of functions defined in a closed

region V, enclosed by a surface (or surfaces) .S, we first

have to set up appropriate complete sets of orthonormal

functions in V. It is well known that the solutions of

the wave equation with the boundary condition

itself solenoidal, namely V ~= O. In this regard Teich -

mann and Wignerz pointed out that the component ex-
are capable of forming a complete set of orthonormal

functions~ti (ci=l, 2, 3, . 0 . ) which is used in expand-
pressed as the gradient of a scalar was necessary to

expand H, in addition to the functions corresponding to
ing an arbitrary piecewise continuous scalar function in

the natural resonance modes. The contribution of this
V. Similarly the solutions of

component to the input admittance is a term propor- V2@~ + kkzox = O (in V)
tional to u–l, that is, an inductance term, where co is the

angular frequency. These functions, however, still re-
tk$x

– O (on S), (2)
main incomplete in the most general case, for the z–

assumption was made that every h-rotational function

can be represented as the gradient of a scalar. The func-
where the derivative is taken in a direction normal to

tion which is denoted by the symbol GO in this paper is
the surface S, are capable of forming another complete

setdl (X=O, 1, 2, . .
the missing one. In a fairly I-ecent paper, Schelkunoff3 function

. ) for the expansion of a scalar

made some comments on Teichmann and Wigner’s
For the expansion of an arbitrary piecewise continu-

work. His illustration shows that the set of natural

modes is not incomplete if use is made of a short circuit
ous vector function defined in V, in like manner, we

have two complete sets of orthonormal functions
which conforms to the impressed field. However, the

W. (p=o, 1, 2, 0 . . ) and~g (g=O, 1, 2, . . . ), each of
complete sets of orthonormal functions defined in Sec-

tion II of this paper are more suitable for a general dis-
which satisfies

cussion. These functions already have been well studied V2 Y’. + kP2 Y!’, = O (in V)
by Muller.J In his treatment, however, the incorrect

n XY?P = O, VY?~ = O (on.$ (3)

* Manuscript received by the PGMT~, August 16, 1957.
and

t Institute of Industrial Science, LTmversity of Tokyo, Chiba
V’@q + k,2@g = O (in V)City, Japan.

‘ J. C. Slater, “Microwave Electronics, ” D. Van hTostrand Co.,
Inc., New York, N. Y., pp. 57–83; 1950. nxVx@g=O, n.@g=O (on S). (4)

2T. Teichmann and E. P. Wigner, “Electromagnetic field expan-
sions in loss-free cavities excited through holes, ” Y. A ppz. Pkys., vol. It is worth noting that two boundary conditions are
24, pp. 262–?67; March, 1953.

‘ S. A. Schelkunoff, “On representation of electromagnetic fields necessary to define these vector functions.

in cavities in terms of natural modes of oscillation, ” ~. A @pi. PIzys., Some of VP and @Q have the common eigenvalues
vol. 24, pp. 262–267; March, 1953.

4 G. Goubau, “Electromagnetische Wellenleiter und Holraume, ” k~’ (a=l,2,3, . 0 . ) and are related to each other by
Wissenschaftliche Verlagsgesellschaft M .B.H., Stuttgart, Germany,
pp. 80-97; 1955. k=wp = v x m,, km, = v Xw,.
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Fig. 1—Fo functions.

Fig. 2—Gofunctions.

Let us denote these Y’. and @~ as 1% and

hereafter. The above relations become

kaEa = V X Ha, k.H. = V

All the other Y’. and @, will be denoted

Ha respectively

x Ea. (5)

asFa (a=O, 1,

2, . . . )and G~(A=0,1,2, . ~ . ). Then it can be shown

that the rotations of F. and GA Vanish.

VXFa=O, VXGA=O. (6)

Fe and Gi with nonzero eigenvalues satisfy the relations

keFa = Vfie, k~G~ = Vdn (7)

where $. and OX are the functions defined by (1) and (2).

If the closed region V has two or more than two separate

boundaries, F. with kti = O can exist and will be denoted

by the symbol Fo. An example of such a region V is the

space between two concentric spheres. FO satisfies

VXFO=O, VFo=O (in V)

nXFo=O (on S).

Therefore, by Helmholtz’s theorem, FO can be set equal

to the gradient of a scalar function ~.

F. = V+

\vhere $ satisfies Laplace’s equation Vz$ = O in V and the

boundary condition n x VI/I= O on S. y!I can be considered

as an electrostatic potential and FO as the electrostatic

field. In a multiply connected region (the region in which

there are contours which cannot be shrunk away to

nothing) Gl with kh = O can exist and will be denoted by

the symbol Go. An example of such a region is the space

between two coaxial cylinders closed at both ends. In

this case, GO corresponds to the magnetic field produced

by the dc current flowing through the circuit which con-

sists of the center conductor, the short ends, and the

outer conductor. GO satisfies

VXGO=O, V. GO=O (in V;)

n. Go=O (on S).

Therefore, by Helmholtz’s theorem, Go can be set equal

to the rotation of a vector function but not tc the

gradient of a scalar function. If we want to set GO equal

to the gradient of a scalar function, we have either to

introduce “a cut” in the region or to use a rnultivalued

function.

In some cases, there are many independent FO’S and

Go’s; however they can all be grouped in the sets of

Fa’s and Gh’s, respectively, for all of them satisfy (6).

II 1. THE EXPANSIONS OF ELECTROMAGNE’rIC FIEI.DS

We shall use the set of functions Eu and F,, in expand-

ing the electric field, for Em and F. have boundary con-

ditions similar to those of the actual field E in a cavity.

For the same reason, we shall expand .Ef in a series in

terms of the Ha’s and Gh’s; the current ] in the E~’s

and Fe’s; and the charge density p in the $,,’s. Thus we

have

J=~E.
J

J Eodv + ~ Fe
J

J Fedv,
a a

P=xtia
s

p+~dz . (8)
a

Since V X E behaves like H, the Ha’s and GA’S will be

used to expand V X E.

vxE=~H.
s

V x E. Hadv
a

From the vector relation

V(EXVXE”)=VXEVXE. –E”VXVXE””

= kaH<, VX E–k.2Eu E

and Gauss’ theorem we have

Jn X E. HadS =
J

V x EHadv – k.
f

E. E(tdz. (10)

Similarly from

V(EXGA)=GiVXE-E V)< G~

=Gk. vXE
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we have

s
n X EGMLS =

s
V x E. Ghdv.

Inserting (10) and (11) into (9), we obtain

~ { SEEdu+snXEHadS~VXE=~Ha ka

+EG~
s

n X E GxdS.
A

(11)

)

(12)

In a corresponding way, expanding V X H in a series in

terms of the Es’s and Fe’s and using the boundary con-

ditions n XEa = O and n XFti = O on S,wehave

JV x H = ~ E.ka HHadv. (13)
a

For the expansion of V B we shall use the ~k’s.

and Gauss’ theorem we have

J
@kB ndS =

f
V ~B~Adv + ki

s
B G,dv. (15)

Substituting in (14), we obtain

Similarly for V. D, expanding in series in the $a’s and

using the boundary condition $. = O on S, we have

We have now set up the series for the various quanti-

ties appearing in Maxwell’s equations. Assuming that

e and p are constant throughout in the region V, we next

substitute these series in Maxwell’s equations, From

VXE+; =O

we have

~Ha(k.S EEadv +Jn X EH.dS)
a

Multiplying (18) by Ha and integrating over V, on ac-

count of the orthonormal conditions, we obtain

ka
s

E. E.dv+p~
s

HHadv = –
dt s

n X EH~dS. (19)

Multiplying (18) by GA and integrating over V, we have

d

s
HG~dv = –

‘% s
n X E G~dS.

Similarly from

VXH–; =J,

wehave

ka
s

HHadv – e 5
dt J s

E Emdv = J E.dv

d
—c—

dt s s
EFadv = JFadv.

The equation V B = O gives

k~
J

H Gkdv =
s

H n~~dS.

Finally V D =p gives

– kae
s

E F.dv =
s

p+odv .

(20)

(21)

(22)

(23)

(24)

From (19)–(24), the expansion coefficients ~E ~Emdv,

~E Fedv, ~H Hadv, ~H GXdv will be obtained. Substi-

tuting these coefficients in the first two equations in (8),

the desired electric and magnetic fields will be given in

the series expansion.

As shown by SIater, (22) and (24) lead to the same

result if we have the equation of continuity

VJ+$p=O.

The only exception is the equations with the subscript

a = O, where Fo has no corresponding to.

To get a relation between (20) and (23) corresponding

to the continuity equation, we take the time derivative

of (23) and substitute in (20).

d

s
H n~idS = – k~

‘% s
n X E. G~dS

.—
s

n X E V@~dS. (25)

Here we introduce a differential operator VS on the sur-

face S which is equivalent to the operator (V – n(d/&z)).

Integrating

Vs(@~nXE) =@AVs. nX E+n XEVs@~

over S and using the relation V@A = V,@~ [for (&jl/dn) = O

on S], we have
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$“+kn X E.dl

The line integral is over the perimeter of S and is equal

to zero, for the surface S is a closed surface and its

perimeter vanishes. Substituting in (25), we find

d

‘% s s
H n~,dS = (V. n X E)@AdS. (26)

This is true because of

Eq. (27) is the continuity for the fictitious surface mag-

netic charge — B. n and the fictitious surface magnetic

current n X E. It expresses the conservation of the ficti-

tious magnetic charge. Eqs. (20) and (23) lead to the

same result using (27), as in the case of (22) and (24).

The only exception is the equation with the subscript

A=o.

IV, THE INPUT A~MITTANC~ OF A CAVITY

We next take up a cavity with an output which

couples the cavity to an outside system, and which is

assumed to take the form of a waveguide (or a coaxial

line). Let SO be the cross section of the waveguide, which

forms the boundary surface between the cavity and the

output (see Fig. 3). The cavity now consists of the natu-

ral cavity plus the part of the waveguide out to the sur-

face SO. The cavity wall S and the surface SO form a

closed surface inside which we are solving Maxwell’s

equations. We assume that the tangential component

of electric field, Ell, is given on SO by excitation from the

outside system, and we expand it in terms of the com-

plete orthonormal modes of the waveguide.

EII == ~ Et.V. (28)
n

where the Ejn’s are the orthonormal eigenfunctions for

the transverse electric field in the waveguide and the

Vn’s are the expansion coefficients. V. can be considered

as a voltage associated with nth mode in the waveguide.

lNext we shall expand the functions i% and Gx on So

in series in the Et~’s.

where the Ian’s and I~n’s are the expansion coefficients,

k is the longitudinal unit vector of the waveguide and is

equal to — n. From (28) and (29), we have

Fig. 3—Reference plane .S..

—-f x k X EtnV..
So n

=~ Vnran.
n

Similarly from (28) and (30), we have

181

~ k X E,J&dS
m

(31)

For simplicity, we shall further assume that the angular

frequency w of the exciting field is in the vicinity of the

resonant frequency U.= ka/~~ of the Eaj, Ha mode,

which is well separated from other resonant frequencies.

Then H. component will be dominant in, thle magrletic

field and the tangential component of E on S will be

given by the approximation5

nXE+ZsH+(l+j) ~~H.s.H.Hadv (33)

where Zs and ~s are the characteristic impedance and

the conductivity of the wall conductor, respectively.

From (33), we have

—
s

n X E.HadS + (1+j) ~~HHadv, (34)
s a

where

(35)

s if we take the surface roughness and irregularities of the wall
into account, (34) and (35) are rewritten in the forms

where Fa and F,Ja are the factors which measure the apparent in-
creasesm the surface resistance and surface reactance.

Measurements show that the relations F.> 1, S.> 1 usually hold.
w.’ in (39) is replaced by
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Assuming that J= isE, we eliminate ~E E,& from (19)

and (21).

d2

s
d

HHadv + up — [
HH.dv i- k.’

‘p @ dt - s HH.dv

‘(’:+ ”)fsnx ‘“Had’

= -(E:+a)~~:X EHadS. (36)

(d/dt)=jti, for we assumed the time factor e~w’. If +M>>m,

as is usually the case, from (31), (34), and (36), we have

from which we obtain

where

‘a’=oa(’-k)

Next from (20) we have

d

s
H Gkdv +

‘z s n X EG~dS
s

.—
s

n X E. GAdS.
so

(37)

(38)

(39)

(40)

We neglect the second term on the left-hand side of (40)

in comparison with the first term, for n X E is sufficiently

small on .S. [In (36) the large terms on the left-hand side

cancel each other and the surface integral ~~n X E HadS

cannot be neglected in the vicinity of the resonant fre-

quency. ] Inserting (3o) into (4o), we have

from which we obtain

Substituting (38) and (42) into (8), we have

~ vnIan/uap

This is the desired magnetic field in the form of series

expansion.

For the electric field, from (21) and (22) we have,

taking into account that there is no steady-state solution

for jE F.dv,

,— ~ VJan/cW

Thus we have solved Maxwell’s equations in the cavitv.

The tangential magnetic field on SO is given by

VnI~n
+ Ii. —

}jcop “

We are considering the cavity which has only one

—

(45)

out-

put with only one transmission mode. The component

HII1 of this mode is

On the other hand, Hill is expressible in the form

HII1 = k X E,lII (47)

where 11 is the current associated with the transmission

mode. From (46) and (47), we have

vlIa,2/m”#
11=~——— ,

vl~x,z

()

+x —-. (48)
a

j :,_”: +1
i jqu

@ Q.’

The input admittance is, therefore,

Similarly for cavities with two output

(49)

have

(50)
(42)
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. . . . .

~=. ____2_ ————

( 1

)
j wLa — ~c: + R.

Fig. 4—Equivalent circuit of one-entry cavity with
well-separated W’S.

where

(kj = 1,2). (51)

11,12are the currents and VI, Vz are the voltages

associated with the transmission modes in the output

leads No. 1 and No. 2, respectively. The equivalent cir-

cuit of (49) is shown in Fig. 4 and that of (51) in Fig. 5.

The generalization of the above discussion to cavities

with many output leads is easy.

V. GA FUNCTIONS

Although the relation V. El= O holds in the region V,
weneed the G~ functions to expand H, because the con-

dition V. H =O does not necessarily mean the vanishing

of the irrotational part of H, as shown by Helmholtz’s

theorem.

We have seen that both the Haand GA functions are

necessary to set up a complete set of orthonormal func-

tions and that an inductance term ~x 1112/@p from

the Gk’s appears in the input admittance besides the

familiar resonance terms from the H~’s. The G~’s

(A # O) are related to the conservation law of magnetic

charge as explained before. If the magnetic field enters

the cavity through a part of SO and returns into the

waveguide through the other part of SO, and if an ob-

server does not see the outside of the cavity, he thinks

that the magnetic charge + I n. B\ is at the entrance

of the field lines through SO, and — I n. B1is at their

exit from SO, and that the magnetic current n X E

flows between them. Such a magnetic field cannot be

expressed by the Ha’s alone but requires the Gx’s as

I 1

4A”mt-wl-&

}$Qx!lJ..

Fig. S—Equivalent circuit of two-entry cavity with
well-separated u~’s.

well. If we neglect the G~’s, we have to assume that

there is no magnetic field through SO.

For illustration, let us consider a cavity with the

smallest w. satisfying u~>>a. The input admittance can

now be written in the form

1
+ j.dell + — (52)

jwLo

where

If the GX’S were neglected, the inductive term 1 /@Lo

would not appear and we might come to the conclusion

that the input admittance must be always capacitive

when u~>>w (a= 1, 2, 3, 0 “ . ). The input admittance

can be both inductive and capacitive depending on the

magnitudes of CO and Lo. If tiCO = l/uLo, the cavity
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shows a resonance which is different from the resonance

of Ea and Ha.A length of waveguide short-circuited at

one end and shunted by a window at the other end can

be considered as a cavity. SO may be placed just in front

of the window. If the length of the cavity is ho/4, cer-

tainly we have ua>>u. The input admittance of the

cavity is, in this case, the shunt admittance of the

window and it can be inductive, capacitive, or resonant,

depending on the type of the window. This shows that

we need the term l/juLo in (52) and hence the GA func-

tions to expand H.
In a certain type of cavities, we need the GO function

as well. Though the fictitious magnetic current may

close upon itself and there may be no fictitious magnetic

charge on SO, this function can contribute an inductance

term to the input admittance. The cavity with a cou-

pling loop and a coaxial line output lead is an example

(Fig. 6). SO may be placed in the coaxial line some dis-

tance away from the coupling loop. In this case, we have

the GO function corresponding to the magnetic field pro-

() 2rm=x
Ha=– iA? sin

T!myy rmaz
— Cos — Cos —

urn lz lv 1,

()7rm% 7rmzx 7rmuy ~mZz
+jA ~ cos — sin — Cos —— (54)

zm lz lu 1.

‘a= -iA(3E3sinTc0s?c0s7
-’AEx3c0sTsin72c0s
+’AH(7Y+R,71

wmZx ~mgy xmZz
Cos — cos —— sin —

L lV 1.
(55)

where

duced by the dc circuit which consists of SO, the outer

and inner conductors of the coaxial line and the loop. &2 =

If the TEM wave is the only transmission mode in the

output lead, the normal component of H on SO is van-

ishingly small. Still, we have an inductance term in the A=
input admittance, for n XE on SO can induce the GO

component of H in the cavity. The necessity for the

inductance term is easily seen, if we consider the admit-

(?)2+(32+(73’=(:)2 “6)

tance at a very low frequency.
The GA functions are

Every &la has a corresponding E., but GO has not.

Hence, GO is not a resonance mode. GO has no relation to

/

—

the fictitious magnetic charge on SO and in this respect
~m&my‘$m. 1

{()–––

. ~mc . ~mzx zmgy 7rmsz

‘~ = i ~JJa ~ ‘ ~ ‘~n J, Cos ~, Cos ~zGo is distinct from all the other Gx’s.

Fig. 6—Cavity with loop.

VI, EXAMPLES

To justify our conclusion about the Gx functions, we

shall calculate the input admittance of simple cavities.

First, the input admittance of a short-circuited rec-

tangular waveguide (lZ X 1.) will be taken up. The refer-

ence plane SO is L away from the shorted end. This

example was discussed in detail in Schelkunoff’s paper,h

still it might be instructive to follow our steps in the

same example.

Considering the waveguide from the shorted end up

to SO as a cavity, we have two types of Hafunctions.

() 7rmuy

+j 7 cos?sin~irmzz
Cos—

II x z 1.

(.)7rmZ ~m=x 3rmUy ~msz

}
+-k ~ cos7cos7sin F , (58)

z II z

where

“2=(?Y+E’Y+RY- ‘“)

The e,n’s are the Neumann factors. The cavity is excited

by the TE,o mode in the waveguide. The tangential

component EtIof this mode is

d
——

2 n-x
E,l = j — sin —

lzly 1=
(60)

where ~2/lZIU is the normalizing factor. In this case,

we need Ha with ms=l, mV=O, ms=l,2,3, . . . in (55)

and G~withm~=l, mV=O, m.=0, 1, 2, . . . only. These

are the functions used by Schelkunoff in his second ap-

proach. From (29) and (30), we obtain
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—-

d 2 7rmz
1.1 = — —– Cos m27r, (61)

1. Lkm

——

IA1=– —
:,R ; ‘Os ‘n’=”

(62)

Hence

2 m%. 2

()

1*12 = — —_

lZ l,km

Inserting these values in (49) and neglecting the effect

of losses, we have

On the other hand, from transmission line theory, we

have

d
—, -/Co’ – tic’ cot~lz

I“ = — ———-
.J-J jw

IJsing the relation

11
1

I

2
Cot o=; 1+~————

())
‘=1 1 – ;-

(

(64) is rewritten in the form

(64)

1

. (65)

Eqs. (63) and (65) can be shown to be identical by a

little algebra, leading to the conclusion that (63) is

equal to (64). Eqs. (63) and (64) represent the same

admittance and hence this conclusion is quite LWLSOll-

able. However, if we neglect the Gk functions from the

beginning, the u” term will not appear in (63) and the

two admittances differ from each other.

Next, we shall take up a short-circuited coaxial line,

showing the contribution of the Go functic)n. The dis-

tance between the reference plane 5’0 and the short end

is L. The tangential component E~l of the exciting field

is

1 1
Etl = i, —~—: —

~2ir log b/a r
(66)

where a is the radius of inner conductor and b k the in-

ner radius of outer conductor. The induced H.’s by this

field are

d2– 1
Ha = id --&—

n7rz
__; COS-L-(?L = 1,2,3, 0 . ,)(67)

42T log b/a .

and the GO is

1 dT1
GO= i+

~27r log b/a T-7”

From (29) and (30), we obtain

d“2Ial = — cos n~
L

(68)

Using the relation

and (49), we have a well known expression of the input

admittance.

i

. 2

(69)

If we neglect the GO function, we have again a faulty

result in this case.
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These examples show that we need the Gk’s as well as

the Ha’s to expand the magnetic field, though V H= O
throughout in the cavity.

VII. APPENDIX

Helwdtoltz’s Theo~em

Let V be a region inside a closed surface (or surfaces)

S. Then any vector function F defined in V can be ex-

pressed as the sum of the gradient of a scalar and the

rotation of a vector.

{.+

F(r’)

J

V’ F(r’)
F(r) = V —. ndS1 — ——— Liv’

,q 4rR ~ %R )

{$

F(r’)
+Vx — x ndS’

s 4rR

V’ X F(r’) ‘

+ ~V 4.R ‘v’ )
(70)

where

X=lr–r’1,

V’ is a differential operator on r’, and n is the outer

IIOrmal on S. Eq. (70) shows that if we have two condi-

tions V.F=O in Iz and n.F=O on S, then F can be set

equal to the rotation of a vector. I f we have two con-

ditions VxF=O in Vand nXF=O on S, then Fcan be

set equal to the gradient of a scalar. V XF= O in V does

not necessarily mean that F = VC#Iwhere @ is a scalar

function of position. In a corresponding way V F= O in

V does not necessarily mean F= V X A where A is a

vector function of position. The examples are the Go and

FO functions defined in Section II.

Complete?tess oj W and @

Consider the relevance

kzs~d, ‘~ { (v Xw)’ + (Vw)’}dv

–2
s

n XW. V XWdS (71)

and take the variation. A little manipulation shows that

s
~2d%, ~ – 2W .

s
8W. (VW? + Nw)dv

+ 2~{w X rz. V X N4+ VWnW}dS. (72)

Therefore

f{ s
(vxY?)2+(vw)2}dv–2 n+wvxw’ds

k2 = (73)

s
Y’sdv

is the appropriate variational expression for the eigen-

value of u?. We can choose Y’P one by one, each of which

makes

S+ 2 Y’PX nV xY’PdS (74)

a minimum under the normalizing condition and the

orthogonal conditions.

s
WP2dv = 1, sWp~Wcdv = O q < p. (75)

An infinite set of functions thus selected forms a com-

plete set of orthonormal functions as the conventional

proof shows. y Every q!’, satisfies (3). Hence, we come to

the conclusion that the solutions of (3) are capable of

forming a complete set of orthonormal functions.

The variational expression for the eigenvalue of

J s{( VX@)2+(V@)’~dv-2 (n@)(V@)dS

k2. __——

s
@2dv

* is

(76)

In a similar way as for~, we easily verify that the solu-

tions of (4) are capable of forming another complete set

of orthonormal functions.

With the aid of Helmholtz’s theorem, it can be shown

that the W’P’S are divided into two groups, the Es’s and

the Fa’s and the @Q’s into the Ha’s and the G~’s.

Eq. (72) and ko2 =0 shows that F. satisfies VxFo =0

and V F. =0 in V since nXW=O on S. Similarly (75)

and k02=O shows that GO satisfies V X Go = O and

VGo=Oin V.

it~ixedBoundary Conditions

The sets of functions’ and~ defined in Section II are

not the only sets for the expansions of the electric and

magnetic fields in a cavity. We can impose the mixed

boundary conditions, short and open, upon the func-

tions. Let S+ S’ be a closed surface (or surfaces) in

which we are solving Maxwell’s equations. The solu-

tions of

VRIT + k2Y’= O

are capable of forming a complete set of orthonormal

functions. Similarly, the solutions of

7 P. M. Morse and H. Feshback, lot. cit., pp. 738–739. Also see

E P. M. Morse and H. Feshback, “Methods of Theoretical Phys- R. Courant and D. Hilbert, “Methods of Mathematical Physics, ”
its.” McGraw-Hill Book Co., Inc., New York, N. Y., p. 54; 1953. Interscience Publishers, New York, N. Y., vol. 1, pp. 424-429; 1953.
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V2@+ k2@ = O

form another complete set of orthonormal functions.
The w’s can be divided into two groups, the E.’s and

the F.’s, and the @’s into the Ha’s and the G&’s. E. and
Ha satisfy the relations

kaE. = V x Ha, k.Ha = V x E.

and the boundary conditions

Those are the functions used by SIater. For F. (a # O),
we have

where ~m is the solution of

Vz+a + k.2+. = O

4a= O(on S) ~~= O (on S’).

Slater, however, took the boundary condition ~.= O on
S and S’. As a result of this fault, he missed in the input
impedance a capacitance term which corresponds to the
inductance term in (49). In a certain type of cavities,
there exists the function Fo. The best example may be a
cavity with a coupling probe and a coaxial line output
as shown in Fig. 7. For Gx (h#O), we have

s

Fig. 7—Cavity with probe.

C30x
@X= O (on S’) — ===o (on s:),

dn

Besides the multiply connected region, ‘we have (20 in
the region where S separates S’ into two or more than
two independent parts. If we take a cross section of the
output guide as S’ and the cavity wall a~sS and impose
a tangential magnetic field on S’ as Slater did, we can
easily show that the Gk components of H are all very
small and can be neglected. But it does not justify the
statement that we need no GA functions tc) start with,
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